
J. Fluid Mech. (2007), vol. 570, pp. 455–466. c© 2007 Cambridge University Press

doi:10.1017/S0022112006002692 Printed in the United Kingdom

455

Motion of large bubbles in curved channels

By METIN MURADOGLU1 AND HOWARD A. STONE2

1Department of Mechanical Engineering, Koc University, Rumelifeneri Yolu,
Sariyer 34450 Istanbul, Turkey

mmuradoglu@ku.edu.tr
2Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

has@deas.harvard.edu

(Received 3 November 2005 and in revised form 17 July 2006)

We study the motion of large bubbles in curved channels both semi-analytically
using the lubrication approximation and computationally using a finite-volume/front-
tracking method. The steady film thickness is governed by the classical Landau–
Levich–Derjaguin–Bretherton (LLDB) equation in the low-capillary-number limit
but with the boundary conditions modified to account for the channel curvature.
The lubrication results show that the film is thinner on the inside of a bend than
on the outside of a bend. They also indicate that the bubble velocity relative to
the average liquid velocity is always larger in a curved channel than that in a
corresponding straight channel and increases monotonically with increasing channel
curvature. Numerical computations are performed for two-dimensional cases and the
computational results are found to be in a good agreement with the lubrication
theory for small capillary numbers and small or moderate channel curvatures. For
moderate capillary numbers the numerical results for the film thickness, when rescaled
to account for channel curvature as suggested in the lubrication calculation, essentially
collapse onto the corresponding results for a bubble in a straight tube. The lubrication
theory is also extended to the motion of large bubbles in a curved channel of circular
cross-section.

1. Introduction
The research and development of microfluidic methods as part of a toolbox for

rapid chemical analysis, synthesis, screening and other lab-on-a-chip scenarios has
inspired new ideas in multiphase flow, mixing, and other transport processes that
involve fluid dynamics (e.g. Squires & Quake 2005; Stone, Stroock & Ajdari 2004).
Here we draw inspiration from one recent set of experimental studies focused on
using a sequence of injected gas bubbles in a flow in a curved channel as a means to
affect mixing of the continuous liquid phase (Guenther et al. 2004, 2005; Garstecki,
Fischbach & Whitesides 2005). Typically, the gas bubbles have a length greater
than the channel width and are separated from the channel walls by thin films
of the wetting, continuous-phase liquid. The film thickness profile is important for
characterizing the ‘leakage’ of the continuous phase past the bubble. For small
and moderate capillary numbers characteristic of the experiments, we show using
numerical simulations that the film is thinner on the inside of a bend than the
outside of a bend. Using a lubrication approach we then map this problem to the
well-known Landau–Levich–Derjaguin–Bretherton (LLDB) problem (Quere 1999;
Landau & Levich 1942; Bretherton 1961), and so arrive at an analytical description
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valid for the small-capillary-number limit, which is in good agreement with the
numerical simulations.

In the experiments of Guenther et al. (2004, 2005) (see also Garstecki et al. 2005)
gas bubbles are periodically injected into a steady liquid flow. Relative to the
bubbles, the continuous-phase fluid between the bubbles is forced to circulate and
advectively enhanced mixing, or stirring, of the fluid is triggered by using a wavy
channel centreline. The gas bubbles are then removed downstream after mixing is
accomplished. This ‘segmented’ gas–liquid flow was shown to be more effective in
reducing the length of the channel necessary to achieve a given degree of mixing than
other micromixing approaches. In addition, the authors suggested that this approach
to mixing can be operated with a wide range of flow rates, which allows it to be used
for chemical reactors with both slow and fast kinetics. A quantitative characterization
of the different aspects of the fluid dynamics, mixing, and dispersion of this type of
flow requires consideration of the flow at the scale of a single bubble. In particular,
the leakage flow from one bubble to the next bubble upstream requires understanding
the flow through the thin films around the bubble. For an example of the analogous
idea of a wavy channel applied to enhance mixing inside drops, see the original
experiments of Song et al. (2003), and numerical models of Stone & Stone (2005) and
Muradoglu & Stone (2005).

As is well known, when a long bubble translates in a straight channel the
continuous-phase liquid leaks through the thin films (Bretherton 1961); the case of a
bubble in a rectangular cross-section channel has also been studied (e.g. Wong, Radke
& Morris 1995 and Thulasidas, Abraham & Cerro 1995). In a straight circular tube
the bubble speed Ub is larger than the average speed of the continuous-phase liquid Uc,
with the difference in speeds controlled by the capillary number, Ca = µUb/σ , which
sets the mean film thickness; in particular, Bretherton has shown Ub −Uc = 2c1UbCa2/3

where the constant c1 = 1.3375.
In this paper we consider the analogous problem for a bubble in a wavy channel.

Related low-Reynolds-number studies, involving both boundary-element numerical
simulations and the lubrication approximation, include Gaver et al. (1996), who
studied a semi-infinite bubble moving through a flexible-walled channel as a model
for re-opening of pulmonary airways, and Halpern & Jensen (2002), who characterized
the motion of a semi-infinite bubble into a uniformly convergent channel. These types
of problems are similar to other studies of thin films on curved substrates. For example,
Schwartz & Weidner (1995) studied thin-film flows over an exterior corner and showed
that the surface curvature is equivalent to a time-independent pressure distribution.
Also, Roy, Roberts & Simpson (2002) developed a higher-order lubrication model for
thin-film flows over curved surfaces to accurately include the effects of the substrate
curvature, gravity and inertia. Reinelt (1995) studied the instability problem in a fluid
that partially fills the gap between two off-centred rotating cylinders and pointed
out the different film thicknesses of the inner and outer layers due to different wall
velocities on the inner and outer cylinders but ignored the channel curvature effects.
Thin-film flows driven by pressure gradients or body forces over a non-uniform
topography were considered by Mazouchi & Homsy (2001), while Howell (2003)
extended the lubrication models to include three-dimensional effects and a general
characterization of the influence of the shape of the substrate. In this paper, we show
that in the ‘Bretherton’, or low-capillary-number, limit the steady film thickness about
a bubble translating in a channel or tube of constant centreline radius is governed by
the classical LLDB equation but the boundary conditions are altered to account for
the effects of the channel curvature. The lubrication model shows that the waviness
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Figure 1. (a) Definition sketch for a large bubble moving through a circular channel, and
(b) the curvilinear coordinate system (r, s) defined for the inner layer.

breaks the symmetry of the thin films on either side of the bubble, with the inside
film being thinner than the outside film. The resulting film thickness can be expressed
in the usual form as h∞ = c1�Ca

2/3
eff where � and Caeff are, respectively, a properly

defined length scale and an effective capillary number. The bubble velocity relative to
the average liquid speed is then derived from mass conservation. Extensive numerical
simulations are performed and the results are compared with the lubrication theory
for small and moderate capillary numbers.

In § 2 we develop a lubrication model for the two-dimensional problem. A
comparison of the numerical simulations and the lubrication predictions is given
in § 3. The extension of these ideas for bubble motion in a curved channel of circular
cross-section is given in § 4. Brief concluding remarks are given in § 5.

2. Bubble in a curved two-dimensional channel: a lubrication model
We consider a large gas bubble, with length much larger than the channel width

w, moving steadily at velocity Ub in a two-dimensional circular channel as sketched
in figure 1(a). The inner and outer radii of the channel are Ri and Ro, respectively.
The flow rate in the channel is kept constant at Q =Ucw where Uc is the average
liquid velocity. Also, the ambient fluid, which is assumed to fully wet the channel,
has density ρ and viscosity µ, and the surface tension is denoted by σ . Gravitational
buoyancy effects and the dynamics of motion inside the bubble are neglected. For
these conditions, the flow is characterized by a Reynolds number Re = ρUcw/µ and
the capillary number Ca = µUb/σ . It is further assumed that the capillary number
is small, Ca � 1, and the Reynolds number is not too large, i.e. for the lubrication
description given below ReCa � 1, which follows from a comparison of the inertial
and viscous terms, so that the inertial forces are also negligible compared to the
viscous forces.

As the bubble moves in the channel, liquid films form between the bubble and
the channel walls. The film thicknesses are denoted hi and ho for the inner and the
outer layers, respectively. In the low-capillary-number limit, film thicknesses are much
smaller than the channel width and the curvature of the interface varies slowly so
that the ‘lubrication’ approximation is applicable in these thin-film regions (Bretherton
1961). We use a bubble-fixed plane polar coordinate system (R, Θ) with the origin
at the centre of the channel and Θ is measured in the clockwise direction. We also
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define a local curvilinear coordinate system with the origin at (Ri, Θo), where Θo

is an arbitrary constant angle. The curvilinear coordinate system is related to the
polar coordinate system as (r, s) = (R − Ri, Riθ), where θ = Θ − Θo and r = 0 is
the inner boundary (see figure 1b). The coordinate system rotates in the clockwise
direction at the rate Ω = Ub/(Ri + w/2) as the bubble moves at constant velocity
Ub in the channel. Therefore, the boundary conditions for a steady flow are no
slip at the walls, i.e. uθ (0, θ) = − Ubi

and uθ (w, θ) = −Ubo
where Ubi

=(2/(2 + β))Ub

and Ubo
= (2 + 2β/2 + β)Ub with β = w/Ri , and no shear at the interface, i.e.

(∂uθ/∂r)(hi, θ) = (∂uθ/∂r)(w − ho, θ) = 0. The shapes of the inner and outer layers
hi(θ) and ho(θ) are to be determined. We first consider the inner layer and then
generalize the results for the outer layer.

The application of the lubrication ideas to this configuration is standard. As
sketched in figure 1(b), the inner layer consists of a semi-circular cap (region III), a
circular film following the channel shape with a constant thickness hi∞ (region I), and
a short intervening transition region (region II) where the curvature changes rapidly
and dynamical effects are important. Using the usual lubrication approximations, the
velocity profile in the inner film is given by

uθ =
1

2µ

1

Ri

∂p

∂θ
(r2 − 2rhi) − Ubi

. (2.1)

Since the film thickness in region I is constant, mass conservation requires

Ubi
(hi − hi∞) = − 1

3µ

h3
i

Ri

∂p

∂θ
. (2.2)

Furthermore, again within the lubrication approximation, the force balance in the
normal direction at the interface dictates

p = pg − σκ, (2.3)

where pg is the constant pressure inside the bubble and κ is the curvature of
the interface for two-dimensional flows and twice the mean curvature for three-
dimensional flows. The curvature is given by

κ = − (Ri + hi − h′′
i)(Ri + hi) + 2h′2

i cos 2θ(
(Ri + hi)2 + h′2

i

)3/2
, (2.4)

where the prime denotes a derivative with respect to θ . Using the assumptions that
the film thickness and the interface slope are small, i.e. hi/Ri � 1 and h′

i/Ri � 1,
equation (2.4) simplifies to

κ ∼= − 1

Ri

+
h′′

i

R2
i

. (2.5)

From equations (2.2), (2.3) and (2.5), we then obtain

hi − hi∞ =
h3

i

3R3
i Cai

h′′′
i , (2.6)

where, in order to account for the geometry of the curved channel, the ‘effective’
capillary number Cai is defined as

Cai =
µUbi

σ
=

2

2 + β
Ca. (2.7)
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The boundary conditions require that hi → hi∞, h′
i → 0, h′′

i → 0 in region I and, using
(2.5) and the fact that κ ≈ 2/w at the static circular cap, h′′

i → 2R2
i /w + Ri in region

III (see figure 1b). The explicit dependence on the effective capillary number may be
removed by the following non-dimensionalization and scaling:

η =
hi

hi∞
, ξ =

Riθ

hi∞
(3Cai)

1/3, (2.8)

which yields the classical Landau–Levich equation

d3η

dξ 3
=

η − 1

η3
. (2.9)

The boundary conditions are given in the usual form as η → 1, η′ → 0, η′′ → 0
as ξ → −∞, and η′′ → α as ξ → ∞, where α = 0.643 is determined by numerical
integration, as the problem is now in the familiar ‘Bretherton’ form. Then from
equations (2.5) and (2.8), we obtain

hi∞ =1.3375Reff i
Ca

2/3
i , (2.10)

where the effective radius is defined as

Reff i
=

wRi

2Ri + w
=

1

2 + β
w. (2.11)

Similarly, the film thickness in the outer layer can be found as

ho∞ = 1.3375Reffo
Ca2/3

o , (2.12)

where the effective radius and the capillary number are defined as

Reffo
=

wRo

2Ro − w
=

1 + β

2 + β
w, Cao = µ

Ubo

σ
=

2 + 2β

2 + β
Ca. (2.13)

It is clearly seen from equations (2.10) and (2.12) that the film thickness in the outer
layer is always larger than that of the inner layer, which may have been anticipated
since the relative velocity is higher for the outer film. To better see the effects of the
channel curvature on the film thickness compared to the classical Bretherton solution,
the film thicknesses scaled by the channel width can be re-written as

hi∞

w
=

1

2 + β

(
2

2 + β

)2/3 (
1.3375Ca2/3

)
, (2.14)

ho∞

w
=

1 + β

2 + β

(
2 + 2β

2 + β

)2/3 (
1.3375Ca2/3

)
, (2.15)

so that the ratio of film thicknesses is

ho∞

hi∞
= (1 + β)5/3. (2.16)

Finally, using conservation of mass, the bubble speed relative to the average flow
velocity in the channel is given by

Ub − Uc

Ub

= 1.3375

[
25/3

(
1 + (1 + β)8/3

)
(2 + β)8/3

]
Ca2/3. (2.17)

This result (take β > 0) shows that the bubble moves faster in a curved channel than
in a corresponding straight channel for a specified constant flow rate; the asymmetry
of the thicknesses of the thin films is the origin for this higher speed.
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3. Results and discussion
Numerical simulations are performed for two-dimensional cases using a finite-

volume (FV), front-tracking (FT) method developed by Muradoglu & Kayaalp (2006)
and the computational results are compared with the lubrication theory. The front-
tracking method is based on a single-field formulation of the flow equations for the
entire computational domain and so treats different phases as a single Newtonian
fluid with variable material properties (Unverdi & Tryggvason 1992). In this method,
the interface between the bubble and the ambient fluid is represented by connected
Lagrangian marker points moving with the local flow velocity interpolated from the
neighbouring curvilinear grid points. The communication between the curvilinear
grid and the marker points is maintained efficiently using the auxiliary grid method
(Muradoglu & Kayaalp 2006). An indicator function is defined such that it is unity
inside the bubble and zero outside. The indicator function is computed by solving
a separable Poisson equation as described by Tryggvason et al. (2001) and is used
to set fluid properties inside and outside the bubble. The marker points are also
used to compute the surface tension forces at the interface and these forces are
then distributed on the neighbouring curvilinear grid cells in a conservative manner.
The surface tension forces are treated as body forces and added to the momentum
equations as δ functions at the phase boundaries so that the flow equations can
be solved using a conventional finite-volume method. The finite-volume method
employed here is based on the concept of pseudo-time stepping and is second-order
accurate both in time and space. The details of the front-tracking method can be found
in Unverdi & Tryggvason (1992) and Tryggvason et al. (2001), and the version used
in the present study is discussed in Muradoglu & Gokaltun (2004) and Muradoglu
& Kayaalp (2006).

A typical computational domain is sketched in figure 1(a). The channel consists
of a straight entrance section of length Li , a circular main section with inner and
outer radii of Ri and Ro, respectively, and a straight exit section of length Le = Li .
The entrance and exit sections are added for convenience to implement the boundary
conditions. A portion of a typical (coarse) curvilinear grid containing 220 × 22 cells
is plotted as an inset in figure 2(a) to show the overall structure of the mesh used
in the computations. The bubble velocity is computed indirectly, i.e. first the angular
velocity of the bubble (Ω) is computed based on the velocity of the centre of the mass
of the bubble and then the velocity of the bubble is computed as Ub = (Ri + w/2)Ω .
The grids are stretched near the solid walls to better resolve the thin films. Note that
more grid points are used in the inner portion of the channel than the outer portion
since the film thickness is expected to be thinner near the inner wall. In the cases
of very low capillary numbers, i.e. Ca � 0.01, finer grids are used to avoid excessive
grid stretching especially near the inner wall. An extensive grid convergence analysis
was performed and the maximum numerical error in film thickness is kept below 5%
in all the results presented in this paper. Both density and viscosity ratios are kept
constant at 0.1 in all the results presented here. Although not shown here due to
space limitations, an extensive study has been performed and shown that the effects
of the viscosity ratio are negligible when λ= µin/µout � 0.1. Bubbles are initialized
assuming hydrostatic conditions in a quiescent flow near the inlet section and then
the flow is started instantaneously by imposing a constant flow rate at the inlet and
keeping the pressure constant at the exit. Also, channel lengths are made sufficiently
large so that the bubbles reach their steady shapes before exiting the channel. All
computations are performed with a low value of the Reynolds number, i.e. Re = 0.8,
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Figure 2. (a) Variation of inner and outer film thickness as a function of the arc angle
measured from the trailing edge of the bubble for Ca = 0.01 and Ca = 0.1. The symbols
indicate the film profiles obtained from the lubrication theory for Ca = 0.01 by Ratulowski
& Chang (1989). The inset shows a portion of a typical (coarse) curvilinear grid containing
220 × 22 grid cells. (b) Inner and outer film thickness as a function of the capillary number.
(w/Ri = 0.333,Grid : 640 × 64.)

to facilitate direct comparison with the lubrication theory. Note that the effects of
Reynolds number are negligible when Re< 10 as discussed by Aussillous & Quere
(2000).

First, the effects of the capillary number on the inner and outer layer film thickness
are examined. The computations are performed using a semi-circular channel shown
in figure 1(a) with the geometric parameter w/Ri = 0.333 and capillary numbers
0.001 � Ca � 8.325. The film thickness of the inner and outer layers is plotted in
figure 2(a) for Ca = 0.1 and Ca = 0.01 as a function of the arc angle measured from the
trailing edge of the bubble to qualitatively demonstrate the influence of the capillary
number and the difference between the film thickness of the inner and outer layers.
The film profiles obtained from the lubrication theory by Ratulowski & Chang (1989)
are also plotted for Ca = 0.01 in figure 2(a), scaled such that they correspond to the
solution to (2.9) for inner and outer layers. As can be seen, the present computational
results are in good agreement with the lubrication solution in most regions including
the monotonic front and the undulating back profiles, but deviate at the trailing
edge of the drop especially in the region away from the channel walls where the
lubrication theory is not valid. We observe that the film is thinner in the inner layer
than the outer layer and both film thicknesses grow with increasing capillary number
as predicted by the lubrication theory. These observations are quantified in figure 2(b)
where the film thickness of the inner and outer layers normalized by the channel
width is plotted as a function of Ca; the dashed line shows the lubrication theory
results for a corresponding straight channel (Bretherton 1961). The inner liquid layer
is thinner while the outer layer is thicker than that of the corresponding straight
channel.

The above numerical and analytical results are replotted in figure 3(a) by scaling
the film thicknesses by the effective radii defined by equations (2.11) and (2.13), and
using as the independent variable the effective capillary numbers defined by equations
(2.7) and (2.13). Note that the effective radius and effective capillary number are
different for the inner and outer layers. In figure 3(a), the dotted line indicates the
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results of the lubrication theory and we also show as diamonds the computational
results of Reinelt & Saffman (1985). The dashed line indicates the approximation

h∞

Reff

=
1.34Ca

2/3
eff

1 + 1.34 × 2.5Ca
2/3
eff

, (3.1)

which has been shown to fit the available experimental data very well for the straight
channel case (Aussillous & Quere 2000). It can be seen that the scaled inner and outer
film thicknesses approximately collapse onto the same curve and the computational
results match well with the lubrication theory for Caeff � 0.01. There is a significant
difference between the numerical and lubrication results for larger effective capillary
numbers. The numerical results are also in a good agreement both with the finite-
difference solutions of Reinelt & Saffman (1985) and the approximation (3.1).

The lubrication theory predicts that the bubble moves faster than the average
velocity of the flow in the channel. This result is verified in figure 3(b) where the
numerical results are plotted together with the lubrication theory. As can be seen, the
numerical results match well with the lubrication theory for small capillary numbers,
i.e. Ca < 0.01, but deviate significantly for larger capillary numbers. It is also seen that
the bubble velocity is slightly larger in the curved channel than in the corresponding
straight channel (w/Ri = 0).

The effects of the channel curvature on the film thicknesses are examined next. For
this purpose, the numerical computations are performed for various values of channel
curvature while keeping the capillary number constant at Ca = 0.01. Figure 4(a)
shows the non-dimensional film thickness (h∞/w) of the inner and outer layers as
a function of the non-dimensional channel curvature (w/Ri). The symbols indicate
the numerical results while the solid lines are the results of the lubrication theory.
The ratio of the outer film thickness to the inner film thickness is also plotted as an
inset. It can be observed that the inner film thickness decreases whereas the outer film
thickness increases with increasing channel curvature as predicted by the lubrication
theory. It is also observed that the numerical results are overall in good agreement
with the lubrication theory. The differences between the computational results and
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Figure 4. (a) Variation of film thickness in the inner and outer layers as a function of the
non-dimensional channel curvature. The inset shows the ratio of the outer film thickness to
the inner film thickness. (b) The relative bubble velocity versus the non-dimensional channel
curvature. Ca = 0.01.

the lubrication theory are partly attributed to the finite value of the capillary number,
i.e. Ca = 0.01.

Finally, the bubble velocity relative to the average flow velocity in the channel is
plotted in figure 4(b) as a function of the non-dimensional channel curvature. The
results show good agreement between the computational results and the lubrication
theory for small channel curvatures.

4. Bubble in a curved tube with circular cross-section
We now consider the analogous situation of a bubble translating along a curved

channel of circular cross-section. Again, we work with the ‘Bretherton’ limit where
the bubble is long compared to the tube radius (a). Denoting the centreline radius as
Rc, the surface of the torus is then given in terms of the angular variables ψ and φ

by

x = (Rc + a cosψ) cosφ, y = (Rc + a cosψ) sin φ, z = a sinψ, (4.1)

where the origin for the Cartesian coordinates (x, y, z) is located at the centre of
the circular channel. Now consider a differential strip on the torus aligned with the
bubble with adψ being the arclength of the strip. We denote the film thickness on this
element as h(φ, ψ). In the low-capillary-number limit the variation with ψ occurs on
the scale a, while we expect the thin film to also vary slowly with φ except in a narrow
transition region O(aCa

2/3
eff ), where Caeff is an appropriately defined capillary number

given below. Thus a lubrication approach is appropriate and the mean curvature of
the interface can be approximated as

κ ∼=
1

a
+

cos ψ

r∗ +
1

r∗2

∂2h

∂φ2
, (4.2)

where r∗ = Rc +a cos ψ . When the bubble moves at a steady velocity Ub, then the film
thickness is given by

us(ψ)(h − h∞(ψ))

h3
=

σ

3µr∗3

∂3h

∂φ3
, (4.3)
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where the surface velocity is defined as us = (1 + (a/Rc) cosψ)Ub. This equation is
simply a local version of the LLDB result where the film profile h(φ, ψ) has the ψ

variations slaved to the variation of surface speed us(ψ). The boundary conditions
are h → h∞, ∂h/∂φ → 0 and ∂2h/∂φ2 → 0 in the inner film region while the curvature
approaches the mean curvature of a sphere of radius a, i.e.

1

r∗2

∂2h

∂φ2
→ 1

a
− cosψ

Rc + a cos ψ

in the outer film region. We denote the φ-independent film thickness near the centre
of the bubble as h∞(ψ), and the effective capillary number as Caeff = µus(ψ)/σ . Then
analogous to the characterization of the two-dimensional problem, let

η = h/h∞(ψ) and ξ =
r ∗ φ

h∞(ψ)
(3Caeff)1/3,

which earlier led to equation (2.9). Using the boundary conditions, the ψ-dependent
film thickness is now given by

h∞(ψ) = 1.3375Reff(Caeff)2/3, (4.4)

where

Reff = a

(
1 +

a

Rc

cos ψ

)
. (4.5)

From conservation of mass, the bubble velocity relative to the average liquid velocity
is given by

Ub − Uc

Ub

= c2

(
1.3375Ca2/3

)
(4.6)

where the coefficient c2 is given by the integral

c2 =

[
1

π

∫ 2π

0

(
1 +

a

Rc

cos ψ

)8/3

dψ

]
∼= 2 +

20

9

(
a

Rc

)2

− 5

162

(
a

Rc

)4

+ O

(
a

Rc

)6

;

(4.7)

we have given the first three terms in an expansion in powers of (a/Rc)
2, since this is

likely to cover most conditions of interest. Note that c2 = 2 corresponds to a straight
channel (Bretherton 1961). Equations (4.6) and (4.7) show that the bubble again
moves faster in a curved circular channel than in a corresponding straight channel
and that the bubble velocity increases monotonically with the channel curvature as
in the two-dimensional case.

5. Conclusions
The motion of large bubbles in uniformly curved channels has been studied

both theoretically using the lubrication approximation and computationally using
a finite-volume/front-tracking method. In the low-capillary-number limit, we show
that the steady film thickness is governed by the classical Landau–Levich–Dejaguin–
Bretherton (LLDB) equation but the boundary conditions are modified to account
for the channel curvature. The film in the outer layer is thicker than in the inner
layer, the difference between film thicknesses increases monotonically as the channel
curvature increases, and scaling rules relating the film thicknesses to the channel
curvature, the capillary number and channel width are given. The results also show
that the bubble velocity, relative to mean liquid speed, is always larger than that in a
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corresponding straight channel and increases monotonically with increasing channel
curvature. Extensive numerical simulations are performed for two-dimensional cases
and show good agreement with the lubrication predictions for small capillary numbers,
i.e. Ca � 0.01, and for small or moderate channel curvatures, i.e. w/Ri � 0.75. The
computational results are in good agreement with the finite-difference solutions for a
bubble in a straight channel obtained by Reinelt & Saffman (1985) for a wide range
of capillary numbers when the quantities are rescaled as suggested by the lubrication
analysis. Finally, we developed a lubrication approach for the motion of large bubbles
in a curved channel of circular cross-section.
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